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1  Introduction 

With the advent of the National Strategic Computing Initiative (NSCI), improved high-performance 
computing will allow researchers to perform more massive simulations than ever before (Tom, 2015). 
Preparing for the next generation of GPU-based supercomputers means understanding how to optimize 
GPU’s now. We will look at Dr. Amanda Randles’s computational model of blood flow, which uses the 
Lattice Boltzmann Method, a particularly beneficial for computational modeling because it is stencil-
based. Stencil computations involve continually updating a point on a multi-dimensional grid using the 
values of its neighbors at each time step. In this paper, we will explore how to best optimize this pattern 
using OpenMP, Cilk, CUDA in tandem with data reorganization. 
 
2  Background 

HARVEY (Amanda, 2013; Amanda, 2015) is a massively parallel code to simulate image-based fluid 
dynamics based on the lattice Boltzmann method (LBM) in three dimensions. Currently, the code runs on 
MPI and OpenMP. Our aim is to extend the efficiency of HARVEY by porting this code to GPU-based 
architecture and exploring other levels of parallelism.  
 
LBM is used for this massive computational work, because it is simple, time-explicit, and accurate. 
Moreover, the stencil-based nature as described below also makes LBM well-suited for massively parallel 
simulations. In LBM, the evolution of the distribution function fi(x, t) is described as follows: 

𝑓𝑓𝑖𝑖(𝑥𝑥 + 𝑐𝑐𝑖𝑖𝛥𝛥𝛥𝛥, 𝑡𝑡 + 𝛥𝛥𝛥𝛥) = 𝑓𝑓𝑖𝑖 (𝑥𝑥, 𝑡𝑡) − 𝜔𝜔𝜔𝜔𝜔𝜔�𝑓𝑓𝑖𝑖(𝑥𝑥, 𝑡𝑡) − 𝑓𝑓𝑖𝑖
𝑒𝑒𝑒𝑒(𝑥𝑥,𝑡𝑡)� (1) 

The quantity 𝑓𝑓𝑖𝑖(𝑥𝑥, 𝑡𝑡) describes the probability of finding a particle at grid point x and time t, with implicit 
discretized velocity ci and grid spacing 𝛥𝛥𝛥𝛥 . In our study, a 19-point cubic stencil is used for the velocity, 
where a grid point connects to its first and second neighbors (referred to as D3Q19). This algorithm 
contains two key components: streaming and collision, given by the first and second terms in the right 
hand side of Eq. (1). The streaming step propagates the fluid particles to adjacent lattice points along the 
velocity trajectory defined by D3Q19. The collision step is calculated through a relaxation toward 
equilibrium, where the local equilibrium 𝑓𝑓𝑖𝑖

𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑡𝑡) is defined in terms of the density, the average fluid 
speed and parameters determined by D3Q19 and the lattice structure.  
 
The input of the HARVEY code is a 3D model converted from patient-specific data. The geometry is then 
segmented by crosscutting, and the segmented pieces are assigned to each processor via MPI. The 
boundary conditions imposed at the top boundary is a full bounce-back such that the fluid particles will 
bounce back in the same direction in which they hit the wall. Those imposed to the left and right walls are 
periodic. The local MPI task deals with a full cardiac cycle, which iterates through each time grid 
containing three steps: collision, streaming (advection), and a boundary condition check. These steps are 
iterated for each fluid node in the three-dimensional space. Detailed implementations are introduced in 
Section 4.1. 
 
For simplicity, we will use a toy code written in C instead of the full HARVEY code, where only the 
local MPI tasks are included. Additionally, the input data is a simplified vessel model with much smaller 
dimensions. Our local changes to the toy code, which enhance the performance by a large scale, could be 
implemented in the HARVEY code in future studies.  
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3  Related Work 

Optimizing stencil-based computations has been a topic of many recent studies. Holewinski et al. 
introduces an automatic code generation scheme for stencil computations on GPU accelerators by 
developing compiler algorithms, specifically using overlapped tiling as a technique to reduce data sharing 
requirements (Justin, 2012). Others, such as Maruyama et al., have also introduced frameworks that will 
automatically translate user-written code into implementable code in CUDA (Naoya, 2011). In another 
article, Datta et al. investigates the optimization of many multi-core architectures, employing an 
autotuning environment that will search the optimizations to minimize runtime (Kaushik, 2008). They 
explore four broad categories of optimizations, oftentimes on the hardware level. First, problem 
decomposition: breaking down a node block (the full grid) into core blocks, then into thread blocks and 
finally register blocks. Second, data allocation: allocating the source and destination grids as one large 
array. Third, bandwidth optimizations: hardware prefetching, software prefetching, and multithreading in 
order to hide memory latency. Lastly, in-core optimizations: creating ISA-specific code generators that 
could output SIMD code. Perhaps the article most relevant to our project and Professor Randles’s 
research is the study of Feichtinger et al. who have proposed the optimization of the LBM using multi-
GPU implementations, resulting in nearly perfect weak scalability (Christian, 2011; Anthony, 2010). In 
addition to this, they also performed analyses on the performance of heterogeneous CPU-GPU clusters. 
Most of the relevant work relies heavily on the architecture on which the system is built. 
 
In this paper, we mainly exploit parallelism on the software level, experimenting on approaches 
introduced in class, as well as some techniques inspired by the literature, and apply them to our specific 
application. Our goal is to produce parallel implementations that are both efficient and more independent 
of the architecture.  

 
4  Methods 

4.1 The Serial Algorithm 
The resulting particle distribution functions are stored in a 4D array: distr[direction=19][x][y][z], where 
the last three indices define the position in a three-dimensional space, and the first index indicates the 
flow direction to 19 neighbors. Possibilities for each flow direction are read from input and stored 
separately. 
 
The two steps -- collision (col) and streaming (advection, adv) are in serial (see Figure 1). In the collision 
step, temporary array distr_adv is calculated from distr based on Equation 1 for each grid point by 
iterating through three for_loops (corresponding to three dimensions). In the streaming (or advection) step, 
distr array is updated by accumulating temp results stored in distr_adv from 19 neighboring grids. This 
step is a stencil, also including three for_loops. 

 
Figure 1  Serial implementation of the collision and the streaming (advection) steps. 
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4.2 Parallel Implementation 
 
4.2.1 OpenMP  
 
OpenMP involved parallelizing the nested for loops in collision and advection by testing a variety of 
factors: number of parallelized loops and thread count. First, we tested using one parallel_for on the outer 
loop for both collision and advection; then, we tested with two and three nested for_loops. In addition to 
this, we also varied the number of threads for each variation of nested loops, using 4, 16, 32 and 64 
threads. Lastly, after reorganizing the data by combining the outer two for loops into [ix*iy][iz][direction], 
we also tried to implement OpenMP with this reorganization for further speedup. In the earlier OpenMP 
computations, we noticed that collision was fastest when serial, whereas advection noticed a significant 
speedup with one parallel_for loop. As a result, we tested the reorganized data using no parallel_for loops 
for collision and one parallel_for loop for advection. 
 
In advection, the stencil pattern is an accumulation: distr += distr_adv[19 neighbors]. For simplicity, the 
toy code treats the accumulation as a random overwrite: distr = distr_adv. Therefore, currently we do not 
consider the concurrency issues arose from doing this stencil pattern in parallel. However, this problem 
could be resolved by using atomic operations supported by #pragma critical/atomic, or using locks by 
invoking omp_set/unset_lock in OpenMP in the HARVEY code. Locks could be used in CUDA 
implementations as well. 
 
 
4.2.2 Cilk 
 
Cilk involved two aspects: 1) parallelizing for_loops by turning them into recursions using cilk_spawn,  
2) exploiting task parallelism as much as possible by analyzing variable dependencies inside of the three 
for_loops (see Figure 2).  

1. The base case for the recursion is: the grain size for x and y dimensions is 1, for z dimension it is 
varied from 2 to 10 in order to determine an optimized base case size. Bisection is used to split the 
tasks until the base case is matched. This transformation is done to both collision and advection. 

2. Computations of the variables are parallelized as long as they are independent. Data dependencies for 
collision and advection are analyzed in Figure 2.  

 
Work: 11; Span: 5.           Work: 7; Span:3 

 

Figure 2  The data dependency graph for collision and streaming (advection), respectively, inside of 
the three for_loops. 
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a. For collision, calculations of variables rho, px, py, pz are done in parallel by cilk_spawn, each 
requires looping through 19 directions. Other independent calculations are not spawned, as they 
are one-step atomic operations and not rate-determining.  

b. For advection, ixa, iya, iza are not dependent on distr_adv, therefore, they are spawned to be 
calculated in parallel with collision steps. 

 
 
4.2.3 CUDA 
 
As demonstrated by the abundant literature on GPU implementation of stencil pattern, such as Paulious et 
al. (2009), Antony et al. (2010) and Christian et al. (2013), we decide to try implementation of the stencil 
computation on GPU using CUDA. 
 
The first version of our CUDA implementation uses two kernel functions for collision and streaming 
respectively. Firstly, due to constraint of CUDA global memory, we collapse the 4D array representing 
the distribution function into 1D. We use a 3D block of size adjustable using parameters. The device copy 
of the distribution function array is allocated and initialized first. The kernel function collision computes 
the lattice Boltzmann stencil and stores values in another output array in global memory. The second 
kernel function advection reads values from the output array of collision, computes the result and writes 
back to the original distribution function array in global memory. After that, boundary values are updated 
based on the given boundary conditions. The implementation executes the above steps for the required 
number of iterations. Finally, the resulting distribution function is copied to host memory. 
 
We then consider several modifications that could potentially improve its efficiency further. Further 
speedup might be achieved by combining processes together in CUDA implementation. When a CUDA 
kernel function is invoked, there will be overhead that stems from the following operations (John, et al., 
2008): (1) the kernel call dynamically creates a new grid with the right number of thread blocks and 
threads for that application step; (2) it allocates device memory (3) indices are computed in each call to 
locate the memory that should be accessed by each GPU thread. For program with multiple kernel calls, 
The overhead (1) and (3) can be reduced by combining the kernel calls, in our case, the collision and 
advection. This is not always possible to do efficiently. For example, 2 consecutive n-by-n stencils take 
2n2 operations for each point, but if combined into one function, the convolution matrix becomes 2n-by-
2n, resulting in 4n2 operations needed for each point. The extra computation will outweigh the benefit of 
combining kernel calls in most cases. 
 
However, in our case, the first kernel call for collision uses a neighborhood of velocity trajectories around 
the current direction, whereas the advection uses a neighborhood of spatial locations, the x, y, and z 
components. The property of separation of dimensions in both stencil computations allows us to combine 
the two processes, without overhead. This results in the following implementation. 
For each GPU thread, the implementation first computes collision using the same algorithm. It then 
identifies all target cells, which are defined as the cells whose advection stencil computation would make 
use of the collision result at current cell. For each of the target cell, the algorithm uses the appropriate 
cumulative function to incorporate the value into the target cell and update the result in an output array. A 
schematic visualization is shown in the following figure. 
 
Note that the same issue of concurrent writes need to be dealt with in this CUDA implementation. 
According to the CUDA C programming guide (Nvidia, 2011), one can use atomic operations such as 
atomicAdd to make sure that the output values at the target cell is accumulated correctly. 
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Figure 3  Illustration of merging collision and advection stencil computations. The current stencil point 
is identified by the GPU block index and thread index. 

 
 
4.2.4 CUDA with in-place update 
 
The basic idea of this potential optimization is to make use of the fast on-chip shared memory with low 
latency during stencil computation.  As we can see from Figure 1, each cell of the output array needs to be 
updated by multiple GPU threads in the advection process. However, since access to global memory is 
slower compared to access to shared memory (David, 2007), we expect an improvement if in-place 
update is used. 
 
Our implementation is based on the assumption that due to the small time step in the high precision 
simulation, the discretized velocity is bounded above by a small constant k compared to the size of the 
grid (in our case, the velocity is less than 4 in all directions). In another word, if we denote the current cell 
for a GPU thread as p, and the target cells as 𝑝𝑝𝑡𝑡1 , 𝑝𝑝𝑡𝑡2 , . .., we can ensure that  

|𝑝𝑝𝑡𝑡𝑡𝑡 . 𝑥𝑥 − 𝑝𝑝.𝑥𝑥|  ≤ 𝑘𝑘; |𝑝𝑝𝑡𝑡𝑡𝑡 . 𝑦𝑦 − 𝑝𝑝. 𝑦𝑦|  ≤ 𝑘𝑘;  |𝑝𝑝𝑡𝑡𝑡𝑡 . 𝑧𝑧 − 𝑝𝑝. 𝑧𝑧|  ≤ 𝑘𝑘;  (2) 

for all its target cells 𝑝𝑝𝑡𝑡𝑡𝑡 . Therefore the target cells of all threads in a block of size 𝑏𝑏.𝑥𝑥 × 𝑏𝑏. 𝑦𝑦 × 𝑏𝑏. 𝑧𝑧 are 
within the region containing the block itself as well as a halo of size 𝑘𝑘. 
Based on the above formulation, we first copied the block and its halo into shared memory, perform 
computation the same way as introduced in the previous CUDA section, but store the resulting values in 
the shared memory instead of global memory. Finally, after a “__syncthreads()” call, we transfer the 
resulting accumulated value back to global memory. 
 

4.2.5 Data reorganization 
 
As mentioned above, the distribution function distr is stored as a 4D array originally, but it is converted to 
3D array for OpenMP implementation, and to 1D array for CUDA implementations. Therefore, the serial 
codes with different data segmented methods (4D, 3D and 1D) are tested as a baseline for comparison. A 
mutation of the indices from distr[direction][ix][iy][iz] to distr[ix][iy][iz][direction] is also carried out, as 
operations on the 19 directions are done within the three for_loops over x, y and z axis, and thus the 19 
directions should be consecutive in memory. 
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4.3  Methods of Evaluation 
Timing results are collected for the collision step, the streaming (advection) step, and the total iterations 
through the cycle of blood flow for each implementation. Speedup are calculated on the basis of the 
original code. Scalability is not explicitly evaluated as we only work on the toy code, but we address 
possible issues related to large data sizes in the following section.  
 
 
5  Results and Discussion 
 
5.1 Data reorganization 

 
Figure 4  Runtimes for data reorganizations of the distr array. 

 
 
As shown in Figure 4, reducing the dimensions of the distribution function array speed up the runtimes. 
The distr array is initialized by looping through x, y, z axes and then the 19 directions, which is the same 
order as in the calculation steps. Therefore, the ways of using cache by 4D, 3D and 1D arrays are literally 
the same, and 1D array reduces the cost of tracing indices. This also explains why reordering the indices 
of the 4D array leads to longer execution time, as the order of the loops for the initialization and the 
calculations are not consistent in this case. However, there will be potential issues associated with 
allocating consecutive memories for lower dimensional arrays when the data size increases significantly.  
 
 
5.2 OpenMP 
 
Our series of performance tests indicate that there is no speedup when adding additional nested 
parallel_for loops (Figure 5a). In fact, performance decreases. Moreover, as shown in Figure 5(c), the 
overall runtime seems to be correlated with the collision time. In other words, speeding up the OpenMP 
implementation means minimizing the collision runtime. This is also evident in the right half of Figure 5a. 
While it doesn’t seem like the streaming time changed significantly, there is a significant difference in 
runtime between 4 threads and 32 threads (Figure 5b). Using 4 threads provided the best speedup, perhaps 
because collision is fastest using 4 threads.  
 
Since we noticed that collision runs fastest serially, perhaps because of its intense computations, we 
suspected that combining a running collision serially and streaming in parallel would be the best 
combination for overall runtime. As expected, data reorganization without the collision for loop and with 
one advection for loop resulted in the best speedup.  
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Figure 5 (a) Runtimes for different OpenMP implementations. The notation in the x-axis labels means 
“(number of parallel for loops for collision, number of parallel for loops for streaming) 
data_reorganization basis”. (b) Runtimes as a function of the number of threads used in OpenMP. (c) 
Dependencies of the total runtime on the collision runtime in OpenMP implementations with different 
number of threads 
 
 
 
5.3 Cilk 

 
Figure 6  (a) Runtimes for converting for_loops into recursion by Cilk_spawn in collision and streaming 
steps under different base case sizes (grain size for z direction). (b) Runtimes for employing task 
parallelism in collision or streaming step by Cilk_spawn, compared with the serial version. 
 
 
Similar to the OpenMP implementations, rewriting for_loops into recursive fork-join using 
cilk_spawn/cilk_sync also parallelized the map and stencil patterns in collision and streaming. However, 
Table 1 shows that the Cilk implementation can be more efficient (24% faster) than OpenMP with the use 
of an optimized base case size. This might be universal for systems where multiple loops are involved. 
Figure 6(a) shows that the choice of the base case is essential for this high efficiency, which should 
balances the scheduling overheads and the scale of parallelism. 
 
Extra level of task parallelism is realized by cilk_spawn. As mentioned in Section 4.2.2, calculating rho, 
px, py and pz in parallel in the collision step should bring about a speedup of 4 theoretically. However, in 
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contrast, the first and second columns in Figure 6(b) shows that it slows down the collision step by more 
than 3 times. This should be attributed to the vast scheduling overhead compared with the size of the tasks. 
For similar reasons, calculating ixa, iya and iza in parallel with the collision step (third column in Figure 
6b) gives similar runtime as the original serial version. We can conclude that employing extra task 
parallelism does not evidently speed up the collision and advection steps due to the relatively large 
overhead. 
 
 
5.4  CUDA implementation 

 
Figure 7  (a) Runtime for basic CUDA implementations of collision or/and streaming using 1D array. (b) 
Speedup for basic CUDA implementations using different number of threads in the 3D (9, 9, 5*19) block. 
 
 
 
Table 1  Selected (Best) results for each implementation 

 Original Data_reorg: 
1D OpenMP Cilk Task 

Parallelism 
Basic 

CUDA 
In-place 

update CUDA 

Runtime/s 
(col+adv) 0.151 0.080 0.059 0.045 0.089 0.013 0.007 

Total 
runtime/s 15.599 8.542 6.557 5.140 10.083 5.924 0.6972 

speedup N/A 1.9 2.6 3.4 1.7 11.6 21.6 

 
 
As we expected, GPU excels at iterative stencil computations. The speedup achieved from GPU (11.6) is 
significantly higher than all other methods that use CPU only. The reason behind is that GPU typically 
contains a much larger number of threads. Our stencil computation does not involve complex functions, 
and is mostly homogeneous for all cells. These are the important characteristics for which GPU is 
advantageous (John D. et al. 2008). 
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Figure 7(a) shows that implementing both collision and streaming (advection) in CUDA give the least 
runtime.  For the in-place update CUDA implementation, these two steps are combined and involved as a 
single GPU kernel function, which further reduces the runtime of collision+advection by two (Table 1). 
After exploring different number of threads utilized for each dimension (x, y and z) within a 3D block, we 
found that the speedup reaches a plateau when the number of threads for x, y and z is increased (9, 9, 5). 
This value is set by default in further improvements on the basic CUDA implementations. 
 
As shown in Table 1, the CUDA implementation with in-place update produces the best results, having a 
clear advantage compared to our previous CUDA implementations. The result demonstrates the 
advantage of the shared memory in situations where it is updated by multiple GPU threads, a fact that is 
also demonstrated theoretically in Shane et al.  
 
In our implementation, the size of halo is set as precisely the same as k, the upper-bound on the maximum 
discretized velocity in the simulation system. A halo of larger size could enable multiple in-place updates, 
before a global synchronization, thus potentially improving the runtime further. However, we note that 
there is a space-time tradeoff when varying the size of halo. As halo gets larger, the benefit of less global 
synchronization comes at the expense of larger number of ghost cells added into the shared memory. This 
increase in the number of ghost cells is especially salient in higher dimensions. In our case, we need to 
consider all 3 spatial dimensions, x, y and z.  Let n denote the block side length in all three dimensions 
(for simplicity we assume a cubic block here), then the total number of ghost cells should be: 

(𝑛𝑛 + 𝑘𝑘)3 − 𝑛𝑛3 = 3𝑘𝑘𝑛𝑛2 + 3𝑘𝑘2𝑛𝑛 + 𝑘𝑘3 (3) 

Even for constant k, we can see that the number of ghost cells grows quadratically with respect to the side 
length of the block. In practice, we observe that the block size and the number of blocks that can be stored 
in one machine decrease dramatically for a halo of size 2k. Considering the memory constraint, we 
determine that the most appropriate size of halo is k. 
 
In this paper, we used an empirical approach to determine the size of the halo. Meng et al. (2009) 
proposed a new algorithm that could automatically determine the size of the halo for stencil computation. 
When the memory constraint is not so tight, this technique could be used to effectively determine the 
optimal size of halo in this application.  
 
 
7  Conclusions 
 
In this paper, we presented several alternatives that exploit parallelism in the stencil-based hemodynamics 
simulation. We first utilized data reorganization to achieve higher rate of cache hits. OpenMP improves 
the runtime by running for loops of stencil computation in parallel. In addition to that, based on our 
analysis of data dependence graph, we use a Cilk implementation to exploit extra level of parallelism by 
computing variables that are independent in parallel via cilk_spawn and cilk_sync functions. However, 
the overhead greatly limits the speedup of task parallelism. Massive parallelism can be achieved if the 
application is run on GPU. We showed that using CUDA, it is possible to achieve a speedup of 11.6. 
Ultimately, we explored various optimizations based on the characteristics of the simulation algorithm, 
namely merging CUDA kernel functions and in-place update with halo. These techniques further boost 
speedup to above 20. The resulting implementation can then be run on a large computing cluster, with 
each computer being in charge of simulating one part of the body. Using the MPI for message passing, we 
can achieve our goal of running the hemodynamics simulation on the entire human body in real time. 
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